Vertical pressure \(q \) shall be based on a distribution width \(L_d \).

\(L_d \) is the length of tie plus \(H_e \).

\(H_e \) is the height from the bottom of tie to the top of shoring.

\(S \) is a distance perpendicular from centerline of track to the face of shoring.

\(D \) is from top of shoring to one foot below dredge line.

\(Z_p \) is the minimum embedment depth.

Length of tie is 9 feet.

\(q \) is the intensity of strip load due to E80 Railroad live load and shall be calculated as follows:

For \(H_e = 0 \) \(L_d = \) length of tie; therefore, \[q = \frac{80,000 \text{ lb}}{(5 \text{ feet})(9 \text{ feet})} = 1,778 \text{ psf} \]

For \(H_e > 0 \) \(L_d = \) length of tie + \(H_e \); therefore, \[q = \frac{80,000 \text{ lb}}{(5 \text{ feet})(L_d)} \]

CASE 1: Lateral live load pressure \(P_s \), due to E80 loading for track parallel to shoring system is calculated using the Boussinesq Strip Load Equation.

\[P_s = \frac{q}{2} \left(\beta + \sin \beta \sin^2 \alpha - \cos \beta \cos \alpha \right) \]

The above equation can be simplified into the following equivalent form:

\[P_s = \frac{q}{2} \left(\beta - \sin \beta \cos (2 \alpha) \right) \]

\(\alpha \) and \(\beta \) are angles measured in radians, \(\alpha = \theta + \frac{\beta}{2} \)

CASE 2: Live load pressure due to E80 loading for track at a right angle to the shoring system can be calculated using the following equation:

\[P_s = K_s q \]

where \(K_s = \tan^2 \left(45 - \frac{\beta}{2} \right) \)

\(\theta \) is the angle of internal friction in degrees.